Zinc Triflate: AValuable Heterogeneous Catalyst for the Synthesis of Pyrano Pyran derivatives

Kaminwar N. S.^a, Nakkalwar S. L.^a, Kasralikar H. M.^a, Patwari S.B.^a, Ranga Ratnam^b, Tekale S. U.^c Pawar R. P.^{c*}

^aDepartment of Chemistry, Lal Bahadur Shastri Mahavidyalaya, Dharmabad.

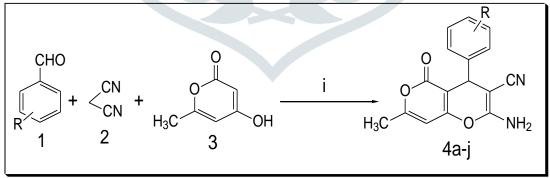
^bDepartment of Chemistry, Govt. College, Bodhan.

^cDepartment of Chemistry, Deogiri College, Aurangabad.

Abstract : An efficient one-pot multi component zinc triflate as heterogeneous catalyst for the synthesis of pyrano pyran derivatives is reported. The reaction involves reaction between diversely substituted aldehydes, malononitrile and 4-hydroxy 6-methyl 2-pyrone. The cheap starting material, easy separation, high catalytic efficiency, good yield of products and simple workup are promising features of the reaction under 1:1 aqueous alcoholic media.

Key words: heterogeneous catalyst, pyrano pyran and zinc triflate.

I. INTRODUCTION


Wide range of pharmaceutical properties were exhibited by compounds containing 4*H*-Pyran skeleton. Those compounds are involved in various pharmacological activities such as antimicrobial¹, antiviral², mutagenicity³, anti-HIV⁴, anticancer⁵, antimicrobial⁶, antifungal⁷, antidiabetic⁸. Therefore Various methods have been reported for the synthesis of these compounds and their analogues such as Fe₃-x TixO₄⁹, ZnO nanoparticles¹⁰, KF/Al₂O₃¹¹, PtCl₄¹², thermolysis of enolizable vinyl quinones¹³, Fe₃O₄@SiO₂-IL-Fc¹⁴, Nanozeoliteclinoptilolite¹⁵, K₂CO₃¹⁶, ultrasonic irradiation¹⁷, β -cyclodextrin¹⁸and ammonium acetate^{19,20}.

Zinc trifluoro methane sulfonate (zinc triflate) known as metal organic, organo inorganic and metallo organic compound is one of the numerous organo metallic compound. Zinc trifluromethane sulfonate is commercially available zinc salt of trifluromethane sulfonic acid, which is commonly used as a Lewis acid catalyst as white solid. It is better catalyst amongst most of the lewis acid catalysts. For different chemical transformations zinc triflate is successfully applied^{21,22, 23}.

Herein, we report a simple and convenient method for the synthesis of 2-amino-3-cyano-4-aryl-7-methyl-5-oxo-4, 5-dihydropyrano [3, 2-c] pyran and 2-amino-3-cyano-4-aryl-6-methyl-4-hydro-pyrano [3, 2-c] quinoline derivatives by one pot three component condensation of aromatic aldehyde, malononitrile and 4-hydroxy 6-methyl 2-pyrone or 1-methyl 4-hydroxy 2quinolone respectively catalyzed by zinc triflate.

II. RESULT AND DISCUSSION:

A new reaction for the synthesis of 2-amino-3-cyano-4-aryl-7-methyl-5-oxo-4, 5-dihydro-pyrano [3, 2-*c*] pyran derivatives has been carried out by one pot three component reaction between aromatic aldehydes, malononitrile(2) and 4-hydroxy 6-methyl 2-pyrone using zinc triflate as catalyst in ethanol at $70-8^{00}$ C is described (Scheme 1).

Scheme1: Reagent and conditions: (i) Zn(OTf)₂, ethanol (5 Ml), reflux for 28-57 min

For optimization of reaction, initially the reaction between 4-bromo benzaldehyde (1 mmol), malononitrile (1.2 mmol), 4-hydroxy 6-methyl 2-pyrone (1 mmol) is carried out in different solvents. It is found that high yield is obtained in ethanol using (**Table 1**).

Entry	Solvent	Catalyst (mol%)	Temperature (⁰ C)	Time (min.)	Yield (%)
1	CH ₃ CN	1	80-90	100	52
2	CH_2Cl_2	1	40	147	47
3	H ₂ O	1	80-90	94	62
4	EtOH	1	70-80	38	88

Table 1: Optimization of the reaction conditions

Then, a series of reactions was carried out using diversely substituted aldehydes under optimized reaction conditions. All theused aldehydesundergo reaction with malononitrile and 4-hydroxy 6-methyl 2-pyrone to produce a library of 2-amino-3-cyano-4-aryl-7-methyl-5-oxo-4, 5-dihydro-pyrano [3, 2-*c*] pyran derivatives in good yield. (**Table 2**).

 Table 2:Synthesis of 2-amino-3-cyano-4-aryl-7-methyl-5-oxo-4, 5-dihydro-pyrano [3, 2-c] pyran derivatives.

Entry	Aldehyde	Time (min.)	Product	Yield ^b (%)	MP (^O C)	
1	Benzaldehyde	20	4a	86	249-251 ¹⁹	_
2	3-Bromo benzaldehyde	18	4b	88	258-260 ¹⁹	
3	Thiophene 2-carboxaldehyde	30	4c	84	242-243 ²⁰	
4	4-Chloro benzaldehyde	21	4d	90	198-200 ²⁰	
5	4-Cyano benzaldehyde	15	4e	88	230-23219	
6	2-Chloro benzaldehyde	17	4f	90	267-268 ²⁰	
7	2-Fluorobenzaldehyde	20	4g	90	238-240 ¹⁹	
8	4-Bromo benzaldehyde	18	4h	88	214-215 ¹⁹	
9	3-Nitro benzaldehyde	15	4i	93	234-235 ¹⁹	
10	4-dimethylamino benzaldehyde	17	4j	90	217-219 ¹⁹	

^asubstituted aromatic aldehyde (1 mmol), malononitrile (1.2mmol), 4-hydroxy 6-methyl 2-pyrone (1 mmol) and C₂F₆O₆S₂Zn [Zn(OTf)₂] (10 mol%), EtOH (5 Ml), reflux. ^bisolated yield.

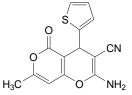
III.EXPERIMENTAL

General details

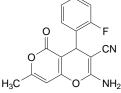
Chemicals were Sigma Aldrich, Alpha Aiser and Spectochem made and used as such without further purification. ¹H NMR spectra was recorded on a Bruker (400 MHz) spectrophotometer using DMSO-d₆ as deuterated solvent with tetramethyl silane (TMS) as the internal standard. Reactions were monitored by TLC using Merk silica gel plates. Products were characterized by ¹H NMR and Mass spectra.

General procedure for the synthesis of spiroxoindole derivatives:

A mixture of isatin (1 mmol), malononitrile (1.2 mmol) and 4-hydroxy 6-methyl 2-pyrone or 1-methyl 4-hydroxy 2-quinolone (1 mmol) were refluxed with stirring in the presence of $Zn(OTf)_2$ (10 mol%) in solvent system in 1:1 aqueous ethanol on oil bath. The progress of reaction was monitored by TLC. After completion of reaction, the mixture was filtered. The residue was washed with warm ethanol to separate the $Zn(OTf)_2$ catalyst. After cooling the ethanolic reaction phase, the precipitate was filtered. The crude products were purified by recrystallization from 95% ethanol.


III. CONCLUSION:

An efficient and simple method for the synthesis of 2-amino-3-cyano-4-aryl-7-methyl-5-oxo-4, 5-dihydro-pyrano [3, 2-*c*] pyran derivatives was developed via one pot three component reaction of aromatic aldehyde, malononitrile and 4-hydroxy 6-methyl 2-pyrone under reflux in ethanol using $Zn(OTf)_2$ as a heterogeneous catalyst. This procedure offers several advantages like higher yields, quick reactions, convenient and simple procedure and eco-friendly reaction conditions.


IV. ACKNOWLEDGEMENTS:

We are thankful to the Principal, L.B.S. College, Dharmabad and Dharmabad Shikshan Sanstha for providing us the research facilities.

Characterization Data:

2-Amino-3-cyano-4-(thiophen-2-yl)-7-methyl-5-oxo-4, 5-dihydro 5-oxo pyrano [3, 2-*c***] pyran, entry 3, (3c):** Mp: 242–243°C; ¹**H NMR(400MHz, DMSO-d**⁶): δH (ppm) 2.213 (s, 3H, CH₃), 4.635 (s, 1H, CH, chiral), 6.263 (s, 1H, =CH), 6.913-6.930 (m, 2H, Ar-H), 7.1 (s, 2H, NH₂), 7.351–7.369 (d, 1H, Ar-H), **HRMS (ES+)** for C₁₄H₁₀N₂O₃S (M+H)+ 287.

2-Amino-3-cyano-4-(2-fluoro phenyl)-7-methyl-5-oxo-4, 5-dihydro 5-oxo pyrano [3, 2-*c***] pyran, entry 7, (3g):. Mp: 238–240°C; ¹H NMR(400MHz, DMSO-d⁶):δH (ppm) 2.226 (s, 3H, CH₃), 4.536 (s, 1H, CH, chiral), 6.285 (s, 1H, =CH), 7.107-7.140 (m, 1H,Ar-H), 7.156-7.219 (m, 1H, ArH), 7.230 (s, 2H, NH₂), 7.260-7.292 (m, 2H, Ar-H); HRMS (ES+) for C₁₆H₁₁FN₂O₃(M+H)+ 299.**

REFERENCES:

- 1. Asghari, S.; Baharfar, R.; Alimi, M.; Ahmadipour, M.; Mohseni, M. *Monatsh. Chem.* **2014**, *145*, 1337–1342.
- 2. Banitaba, S. H.; Safari, J.; Khalili, S. D. Ultrason. Sonochem. 2013, 20, 401-407.
- .Kataev, E. A.; Reddy, M. R.; Reddy, G. N.; Reddy, V. H.; Reddy, C. S.; Reddy, B. V. S., *New J. Chem.*2016, 40, 1693–1697.
- 4. .Asghari, S.; Mohammadnia, M. Inorg. Nano- Metal. Chem. 2017, 47, 1004–1011.
- 5. .Tabassum, S.; Govindaraju, S.; Pasha, M. A. Ultrason. Sonochem. 2015, 24, 1–7.
- 6. .Deepika Rajguru , Balwant S. Keshwal, Shubha Jain, *Med Chem Res*, 2013, 22 (12), 5934-5939.
- 7. .Zolfigol, M. A.; Yariea, M.; Bagherya, S.; Khoshnood, A.; Alonso, D. A.
- 8. Research on Chemical Intermediates, **2017**, *43* (5), 3291-3305. Mosaddegh, E.; Hassankhani, A.; Maleh, H. K.Material Science and Engineering C, **2015**, *46*, 264-269.
- 9. Wang, X. S.; Zhou, J. X.; Zeng, Z. S.; Li, Y. L.; Shi, D. Q.; Tu, S. J.Arkivoc, 2006, (xi), 107-113.
- 10. Pastine, S. J.; Youn, S. W.; Sames, D. Org. Lett. 2003, 5(5), 1055-1058.
- 11. Wang, X. S.; Zhou, J. X.; Zeng, Z. S.; Li, Y. L.; Shi, D. Q.; Tu, S. J.Arkivoc, 2006, (xi), 107-113.
- 12. Chen, I.S.; Tsai, I.W.; Teng, C.M.; Chen, J.J.; Chang, Y.L.; Ko, F.N.; Lu, M.C.; Pezzuto, J. M. Phytochemistry, 1997, 46, 525.
- 13. Wabo,H.K.; Tane,P.; Connolly,J.D.; Okunji,C.C.; Schuster,B.M.; Iwu, M.M.Nat. Prod. Res. 2005, 19 (6), 591-595.
- 14. Michael, J.P.; Nat. Prod. Rep. 2003, 20, 476-493.
- 15. .Yao, M.J.; Guan, Z.; He, Y.H. Synth. Commun. 2013, 43, 2073-2078.
- 16. .Emde,U.; Schiemann,K.; Schlueter, T.; Saal,C.;Maiwald, M. WO Patent. 2007, 147480A2.
- 17. .Abdou, M.M. Arab.J. Chem., 2017, 10(2), 3324-3337.
- .Kataev, E. A.; Reddy, M. R.; Reddy, G. N.; Reddy, V. H.; Reddy, C. S.; Reddy, B. V. S. New J. Chem. 2016, 40, 1693– 1697.
- 19. Lei, M.; Ma, L.; Hu, L. H. Tetrahedron Lett. 2011,52, 2597-2600.
- 20. Wang, X. S.; Zeng, Z. S.; Shi, D. Q.; Tu, S. J.; Wei, X. Y.; Zong, Z. M. Chin. J. Org. Chem. 2004, 24, 1595-1597.
- 21. Yamazaki, S.; Takebayashi, M.; Miyazaki, K. J. Org. Chem. 2010, 75(4), 1188-1196.
- 22. Nisa, R. U.; Ayub, K. New J. Chem. 2017, 41(12), 5082-5090. Doi 10.1039/c7nj00312a
- 23. Uday Kumar, N.; Sudhakar Reddy, B.; Prabhakar Reddy, V.; Bandichhor, R. *Tetrahedron Letters*, **2014**, *55*, 910–912.